Risk Assessment and Roadmap

Risk Assessment & Security Roadmap

With benchmarking data collected from the Security Health Check – Snapshot Assessment task it is time to chart a course. Strategic planning must focus on relevant, practical, and proportional recommendations. This Risk Assessment and Security Roadmap blog can enable organizations to:

Establish Coordinates –

  • Pinpoint your Business Requirements
  • Create your Security Risk Profile

Harmonize –

  • Integrate Regulatory, Legal and, Policy Drivers
  • Identify Organization Stakeholders and Seek Consensus

Chart your Course –

  • Develop a Security Roadmap
  • Deliver Prioritized Action Plans

Chart Course

The Need for a Solid Risk Assessment Program

Meeting today’s numerous information security regulations is one of the most challenging and complex issues facing corporate IT today. The increased frequency of security incidents, including well publicized breaches, has resulted in new legislation at both the federal and state level.

Fundamental to meeting these regulations, including the Gramm-Leach-Bliley Act (GLBA), the Health Insurance Portability and Accountability Act (HIPAA) and Sarbanes-Oxley are regularly scheduled risk assessments. Each of these regulations holds organizations accountable for the protection of private information and requires risk assessments as one component of an effective security program.

Now, more than ever, organizations need a complete understanding of the impact of regulations on their core business and the need for third party risk assessments to comply with these regulations.

When harmonized with security policy the most fiscally responsible and secure infrastructure is driven from the top with clear strategic justification, prioritization, and timing.

The first step in developing a proactive IT Security Governance program is the risk assessment. The risk assessment identifies and prioritizes risks to enterprises via networks and information systems. Risk assessment is the foundation for developing risk management strategies within an organization. Organizations should use a practical methodology which identifies the assets that support business operations, the vulnerabilities, and the threats to those assets.

Risk is present at the union of:

  • Assets,
  • Threats,
  • Vulnerabilities

Assets Risks Threats

Our methodology consists of information gathering to determine the current state, analysis of information, and the development of a security roadmap

Information Gathering

The information gathering process focuses on the three key risk components: assets, vulnerabilities, and threats. The approach is asset-centric, meaning the risk assessment begins with the identification of assets and the value/criticality of assets that are central to business operations. Threats which could impact these assets are identified and assessed. Finally, vulnerabilities that may be present on the asset controls are examined to determine the likelihood of impact.

The information gathering phase typically consists of interviews with business managers and technical staff and review of documentation relating to information security and assets (including network topology). Technical vulnerability assessment results can be used to enhance the accuracy of initial risk assessment results, leveraging Common Vulnerabilities & Exposure CVE) together with the Common Vulnerability Scoring System (CVSS).

Asset Identification

The goal of a risk assessment is to identify the risk to critical business operations. The first step in the risk assessment is to identify the assets that support critical business operations. These assets could include physical and logical assets such as data center systems, employee computers, network communications devices and channels, remote work areas such as employee’s home computers, customer data, employee data, and intellectual property.

The key critical and sensitive assets that support business areas are identified through documentation review and interviews of business managers and select technical staff, identifying:

  • Physical assets and locations
  • Asset ownership and classification
  • Network and logical connectivity
  • Software (OS and application)
  • Data flow throughout the network

Questions during the interview also focus on how the information technology assets are utilized by all types of system users – administrators, customers, employees, etc. This allows a profile to be built of Application Roles and Relationships and User Roles and Relationships. Assets are then ranked based on their value to operations.

On a scale of 1 to 4, asset value will be ranked as follows:

  1. Catastrophic – catastrophic failure is possible if the asset is destroyed / compromised.
  2. Critical – the asset is considered “mission critical” to business operations.
  3. Marginal – the asset marginally affects business operations; some degradation of service is likely if the asset is destroyed / compromised.
  4. Negligible – destruction / compromise of the asset will have a negligible effect on business operations.

Vulnerability Assessment

Threats cannot impact assets unless the assets are vulnerable to the specific threats. Security mitigating controls may be in place, reducing the likelihood of a threat exploiting a given asset. Understanding the types of vulnerabilities that exist on critical assets is a key step in the risk assessment.

Risk Framework

Comprehensive information security programs require that every asset have protective measures in the areas of:

  • Protection
  • Detection
  • Containment
  • Eradication
  • Recovery

Preventative measures reduce the likelihood of exploitation. The ability to detect and respond to incidents allows an organization to minimize losses in the event of exploitation. Furthermore, effective detection and response provides a deterrent to exploitation attempts.

Vulnerabilities can be identified based upon the degree of protective measures in the areas of prevention, detection, and response. For each critical asset, identify the status of compensating or mitigating controls in place. A few examples of areas to evaluate include:


  • Security policies and procedures
  • Network and application architecture
  • Software version and patch level
  • Network segmentation and access controls
  • Authentication/authorization mechanisms
  • Security awareness program


  • Network intrusion detection capabilities
  • Host intrusion detection capabilities
  • Incident reporting policy and processes


  • Incident response program capabilities
  • Response policies and process
  • System back-up and recovery capabilities

Vulnerabilities that affect critical assets are discovered through interviews, documentation review, and technical analysis and validation testing. Vulnerabilities are classified based on their severity. Severity identifies the exposure of an asset:

  • High – vulnerability which allows threat to control/destroy an asset.
  • Medium – vulnerability which allows threat to compromise/access an asset.
  • Low – vulnerability which provides threat information which could be used to compromise an asset.

For each critical asset identified during the asset identification phase, identified vulnerabilities are noted and classified.

The more accurate the vulnerability assessment, the more accurate the risk assessment will be. The assets and threats that support and impact business operations tend to change much less frequently than the vulnerability analysis. New vulnerabilities, changes in technology, and user/administrator introduced issues all contribute to a dynamic vulnerability environment. Areas identified through this high level vulnerability assessment are candidates for a detailed, technical assessment.

Threat Identification

Threats are individuals, groups, or external events which can impact assets. Threats can take many forms, including people (such as insiders or Internet users), technology (such as worms or Trojans), and events (such as flood or fire). The project team works with the enterprise to identify the threats that may impact identified assets. To ensure that all credible threats are considered maintain a list of various threat types.

Our approach to threat identification is based on threat modeling – building scenarios that reflect possible events. Each asset is analyzed from the perspective of the impact (liability) of various threats scenarios. Examples of impact produced by threats include:

  • Direct costs from physical destruction / loss
  • Direct costs from theft / extortion
  • Costs to resolve incidents (internal productivity loss, outside resources)
  • Loss of consumer confidence
  • Failure to meet regulatory requirements
  • Failure to meet contractual agreements
  • Worst case scenarios (catastrophic failures of information systems that result in physical destruction, death, injury, or an inability to continue operations)

The scenarios listed above can only happen if a threat impacts an asset that has a vulnerability. However, understanding how the threats might impact an enterprise’s business is an important step in the process. The output of this stage is a ranking of threats based on their prevalence. Prevalence is a measure used to indicate if a particular threat has the capability and motivation to impact each asset.

Rank threats on the following scale:

  • High – threat has capability and motivation to destroy / compromise asset function
  • Medium – threat has capability and motivation to degrade asset function
  • Low – threat has minimal capability and motivation to affect asset

Capability and motivation are important attributes of threat. Threats need both attributes to be credible. For example, consider the scenario when the threat is an Internet attacker and the asset is an e-commerce server connected to the Internet. The attacker has motivation in the form of monetary gain and capability via hacking skills. Each identified asset is analyzed based on the threats that have the ability to affect them, and each threat is ranked based on prevalence.

The results of threat modeling are recorded. The asset and threat information collected thus far provides possible impacts to the business. However, the likelihood of these impacts cannot be determined without the final component of the risk assessment, which is the vulnerability assessment.


The results of the information gathering phase is a collection of data which represents the assets critical to business operations, the threats that may impact those assets, and the vulnerabilities resident on those assets. Risk is present when critical assets, credible threats, and existing vulnerabilities are present.

As the goal of the risk assessment is to identify and prioritize risk to guide the formulation of security strategies, focus on a qualitative risk assessment rather than attempting to assign monetary values to potential losses. It is more practical to use this approach because of the limited data available on likelihood and costs and the difficulty in accounting for liability such as the loss of consumer confidence.

Through a strategic approach to Risk Assessment, this process enables organizations to optimize their security investments and proactively protect their most important information assets from potential threats. When you protect the right assets from the right threats with the right measures, you maximize your security ROI.

Security RDA Evolution

Chart your Course with a Security Roadmap

With initial coordinates established develop your security roadmap. After ascertaining risk within the environment, the next step is to develop strategies to manage that risk. Risk exists due to the convergence of assets, threats, and vulnerabilities, and accordingly mitigating controls which reduce one or all of these factors will reduce the overall risk to the organization. Focus on strategies that maximize return on security investment (ROSI) – strategies that result in the maximum reduction in risk for the minimum security investment.

The security roadmap clearly represents the risks faced by the organization, and risk management strategies that can be employed to reduce those risks. Risk management strategies fall into four categories:

  • Risk Mitigation – Today’s security risk management is primarily mitigation – reducing exposure through security countermeasures (People, Process, and Technology)
  • Risk Transfer – Risk is transferred (contractually) to a 3rd party, e.g., outsourced or an insurance provider
  • Risk Avoidance – Risk is avoided (i.e., such as eliminating an existing online or network capability)
  • Risk Acceptance – Risk is accepted. Certain risk is cheaper to accept than fix. There is a point of diminishing returns with security spending versus return.

Risk mitigation remains the most common security Risk Management strategy because much of the risk associated with security cannot be transferred or avoided – it must be reduced. Strategies are prioritized based on the amount of risk reduction they produce, and the relative cost. The results are documented in the security roadmap action plan.

In a future blog we will discuss more about developing a Reference Design Architecture that aligns with improving Security Capability Maturity and evolves as part of the Adaptive Security Architecture Lifecycle.

Thanks for your interest!

Nige the Security Guy.


About secureadvisor
Security Guy

4 Responses to Risk Assessment and Roadmap

  1. Pingback: ISO 27002 Security Benchmark | Nige the Security Guy

  2. Pingback: Security Series Master Index | Nige the Security Guy

  3. Pingback: Threat and Vulnerability Management | Nige the Security Guy

  4. Pingback: Security Strategy Retrospective | Nige the Security Guy

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: